Public Function Spence( _
ByVal vX As Variant _
) As Variant Spence(-5.0) = -2.74927912606081
Spence(-0.5) = -0.448414206923646
Spence(+0.0) = 0
Spence(+0.5) = 0.582240526465013
Spence(+1.0) = 1.64493406684823
Spence(+5.0) = 1.78371916126664See also: DSPENC FunctionvX: Function returns Null if vX is Null or cannot be fixed up to a Double precision floating point number.
Spence(X) calculates the double precision Spence's integral for double precision argument X. Spence's function defined by
integral from 0 to X of -LOG(1-Y)/Y DY.For ABS(X) .LE. 1, the uniformly convergent expansion
Spence = sum K=1,infinity X**K / K**2is valid.
integral from 0 to Z of LOG(A*X+B)/(C*X+D) DX =
LOG(ABS(B-A*D/C))*LOG(ABS(A*(C*X+D)/(A*D-B*C)))/C - Spence(A*(C*Z+D)/(A*D-B*C)) / CReferences: K. Mitchell, Philosophical Magazine, 40, p.351 (1949).
Stegun and Abromowitz, AMS 55, p.1004.Copyright 1996-1999 Entisoft
Entisoft Tools is a trademark of Entisoft.